Ion permeability of the cytoplasmic membrane limits the maximum growth temperature of bacteria and archaea.
نویسندگان
چکیده
Protons and sodium ions are the most commonly used coupling ions in energy transduction in bacteria and archaea. At their growth temperature, the permeability of the cytoplasmic membrane of thermophilic bacteria to protons is high compared with that of sodium ions. In some thermophiles, sodium is the sole energy-coupling ion. To test whether sodium is the preferred coupling ion at high temperatures, the proton- and sodium permeability was determined in liposomes prepared from lipids isolated from various bacterial and archaeal species that differ in their optimal growth temperature. The proton permeability increased with the temperature and was comparable for most species at their respective growth temperatures. Liposomes of thermophilic bacteria are an exception in the sense that the proton permeability is already high at the growth temperature. In all liposomes, the sodium permeability was lower than the proton permeability and increased with the temperature. The results suggest that the proton permeability of the cytoplasmic membrane is an important parameter in determining the maximum growth temperature.
منابع مشابه
Membrane composition and ion-permeability in extremophiles
Protons and sodium ions are the only used coupling ions in energy transduction in Bacteria and Archaea. At their growth temperature, the permeability of the cytoplasmic membrane of thermophilic bacteria to protons is high as compared to sodium ions. In some thermophiles, therefore, sodium is the sole energy coupling ion. Comparison of the protonand sodium permeability of the membranes of variet...
متن کاملAdaptation of microorganisms and their transport systems to high temperatures.
Growth of Bacteria and Archaea has been observed at temperatures up to 95 and 110 degrees C, respectively. These thermophiles are adapted to environments of high temperature by changes in the membrane lipid composition, higher thermostabilities of the (membrane) proteins, higher turnover rates of the energy transducing enzymes, and/or the (exclusive) use of sodium-ions rather than protons as co...
متن کاملSurvival Strategies and Membrane Properties of Extremophilies
The cytoplasmic membranes of Bacteria and Archaea determine to a large extent the composition of the cytoplasm. Since the ion and, in particular, the proton and/or the sodium ion electrochemical gradients across the membranes are crucial for the bioenergetic conditions of these microorganisms, strategies are needed to restrict the permeation of these ions across their cytoplasmic membranes. The...
متن کاملCytoplasmic pH measurement and homeostasis in bacteria and archaea.
Of all the molecular determinants for growth, the hydronium and hydroxide ions are found naturally in the widest concentration range, from acid mine drainage below pH 0 to soda lakes above pH 13. Most bacteria and archaea have mechanisms that maintain their internal, cytoplasmic pH within a narrower range than the pH outside the cell, termed "pH homeostasis." Some mechanisms of pH homeostasis a...
متن کاملMode of action of linenscin OC2 against Listeria innocua.
Linenscin OC2 is a small hydrophobic substance produced by the orange cheese coryneform bacterium Brevibacterium linens OC2. Linenscin OC2 inhibits growth of gram-negative bacteria with an altered outer membrane permeability and gram-positive bacteria. It is also able to lyse eucaryotic cells. The mode of action of linenscin OC2 on the Listeria innocua cytoplasmic membrane and the effects of en...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular microbiology
دوره 18 5 شماره
صفحات -
تاریخ انتشار 1995